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We argue that a crucial determinant of the acceptance dependence of fluctuation measures in
heavy-ion collisions is the range of correlations in the momentum space, e.g., in rapidity, ∆ycorr.
The value of ∆ycorr ∼ 1 for critical thermal fluctuations is determined by the thermal rapidity
spread of the particles at freezeout, and has little to do with position space correlations, even
near the critical point where the spatial correlation length ξ becomes as large as 2 − 3 fm (this is
in contrast to the magnitudes of the cumulants, which are sensitive to ξ). When the acceptance
window is large, ∆y � ∆ycorr, the cumulants of a given particle multiplicity, κk, scale linearly
with ∆y, or mean multiplicity in acceptance, 〈N〉, and cumulant ratios are acceptance independent.
While in the opposite regime, ∆y � ∆ycorr, the factorial cumulants, κ̂k, scale as (∆y)k, or 〈N〉k. We
demonstrate this general behavior quantitatively in a model for critical point fluctuations, which also
shows that the dependence on transverse momentum acceptance is very significant. We conclude
that extension of rapidity coverage proposed by STAR should significantly increase the magnitude
of the critical point fluctuation signatures.

I. INTRODUCTION

Mapping the QCD phase diagram is one of the most
important goals of the heavy-ion collision experiments.
A prominent feature on this map of the thermodynamic
states of QCD is the critical point punctuating the first
order phase transition between hadron matter and quark-
gluon plasma phase. Although this scenario is suggested
by many models of QCD thermodynamics as well as some
lattice calculations, the precise location (in temperature
vs baryochemical potential, TµB , plane) and even the
existence of this point is an open question, which so far
has eluded attempts to answer it using theoretical tools,
such as first-principle lattice simulations (for reviews, see,
e.g., Refs. [1–9]).

The approach pursued by experiments to discover the
critical point is based on the analysis of the event-by-
event fluctuations [10–12]. In the thermodynamic limit
the critical point is a thermodynamic singularity, where
the intensive measures of fluctuations violate the central
limit theorem and diverge. In a realistic heavy-ion colli-
sion this divergence is cut off by the interplay of finite-
time, non-equilibrium effects and the effect of the criti-
cal slowing down[11, 13, 14]. If, by varying the collision
energy

√
s, one can create fireballs with freezeout condi-

tions close to the critical point, one expects to observe
non-monotonous dependence of fluctuation measures on√
s as the critical point is approached and then passed.

The search for the critical point using such beam energy
scan strategy is underway at the Relativistic Heavy Ion
Collider (RHIC) at the Brookhaven National Laboratory
(BNL) and at the Super Proton Synchrotron (SPS) at
CERN in Geneva [15–19].

In order to compare experimental measurements with
theoretical predictions, as well as the results of different
experiments to each other, it is essential to understand
the dependence of the fluctuation measures on the size
of the detector acceptance window, which varies among
experiments, or even different analyses of the same exper-

iment. The goal of the paper is to elucidate and quantify
this dependence.

The focus of this work is on critical point signatures.
In particular, on the higher-order cumulants sensitive to
the thermodynamic conditions at freezeout [20, 21] and
especially to the critical fluctuations [22]. However, we
begin with a more general analysis of acceptance depen-
dence, which we then illustrate using the critical point
fluctuations. The purpose of this paper is to examine the
physics behind this dependence and demonstrate it in a
simple, analytic, but quantitatively realistic model. Our
qualitative arguments and quantitative results comple-
ment and extend analyses of the acceptance dependence
of the critical fluctuations in Refs.[1, 23] to higher-order
cumulants, and also complement and contrast the anal-
yses of Refs.[24–31] of non-critical correlations (see also
reviews [12, 32] for further references).

The type of questions we wish to answer are, for ex-
ample, what is the effect on critical point signatures of
increasing the transverse momentum range, say, from
pT ∈ (0.4, 0.8) GeV to (0.4, 1.2) GeV, as has been done
in the recent analysis by STAR [33]? Or, what is the
effect of extending the rapidity window from ∆y = 1 to
∆y = 1.5 for protons, which will result from upgrading
the inner sectors of the Time Projection Chamber (iTPC)
proposed [34] by the STAR experiment at RHIC?

II. ACCEPTANCE DEPENDENCE OF
CUMULANTS

Our main goal is to provide a transparent description
of the acceptance dependence of fluctuation measures,
which can be used to build quantitatively precise tools
necessary to extract physics from experimental data. To
prevent the complexity of the heavy-ion collision from
obscuring the relevant features we wish to highlight, we
start with the simplest idealized Bjorken model [35] of
a boost invariant fireball and consider the dependence

ar
X

iv
:1

51
2.

09
12

5v
2 

 [
nu

cl
-t

h]
  7

 J
an

 2
01

6



2

of the fluctuation measures on the rapidity acceptance
window ∆y. This will allow us to gain understanding of
the main characteristics of the acceptance dependence,
which we can then carry to a more realistic model with
transverse expansion and pT acceptance dependence.

Let us denote the number, or multiplicity, of accepted
particles of a given species (e.g., protons or pions) by
N .1 The mean over all events, 〈N〉, is then proportional
to ∆y due to the boost invariance:

〈N〉 ∼ ∆y. (1)

How do the cumulants of order k, κk[N ], of N vary
with ∆y? The answer crucially depends on the range of
the correlations in rapidity, which we denote by ∆ycorr.

Different contributions to the correlations (initial con-
ditions, HBT, thermal/hydro fluctuations, critical fluctu-
ations, etc.) are characterized by different ∆ycorr. In this
paper we shall focus on critical point fluctuations, but we
begin with a more general discussion of correlations and
their effect on acceptance dependence.

It is important to distinguish two qualitatively differ-
ent regimes: ∆y � ∆ycorr and ∆y � ∆ycorr.

When ∆y � ∆ycorr, all cumulants grow linearly with
∆y, because uncorrelated contributions are additive, by
construction, in a cumulant. It is convenient and custom-
ary to remove this trivial volume dependence by normal-
izing cumulants by their trivial, uncorrelated (Poisson)
value (〈N〉, for cumulants of N), defining

ωk ≡
κk
〈N〉

. (2)

The contribution of physical (e.g., critical) correlations
to this quantity, (ωk − 1), saturates at a constant value
for ∆y � ∆ycorr.

2

In the opposite regime, ∆y � ∆ycorr, since the cumu-
lants approach Poisson distribution values in the limit
∆y ∼ 〈N〉 → 0, we shall focus on the deviation of the
cumulants from their Poisson value, κk − 〈N〉. It is con-
venient to express κk − 〈N〉 as a linear combination of
factorial cumulants, κ̂l, of equal or lower orders

κk − 〈N〉 = κ̂k +

k−1∑
l=2

S(k, l)κ̂l (3)

where S(n,m) are Stirling numbers of the second kind.
The most useful property of the factorial cumulants is
that each κ̂k measures the strength of the (connected) k-
particle correlation, and is therefore proportional to the

1 The acceptance dependence of the fluctuations of a particle num-
ber as opposed to, e.g., net-proton or net-charge, is considerably
more transparent and allows us to focus on the most important
features.

2 Eq. (2) is not the only natural way to normalize the cumulant.
Another widely used normalization is κk/κ2. Since, in practice,
κ2 − 〈N〉 � 〈N〉, there is little difference between this normal-
ization and Eq. (2).

number of correlated k-plets, which scales roughly as Nk,
i.e., (∆y)k. This property is known (see, e.g., Ref.[36] and
references therein), but for completeness and to provide
a better intuitive understanding we derive it for k ≤ 4 in
Appendix A.

Because of the simple asymptotic behavior of the fac-
torial cumulants in both regimes of ∆y:

κ̂k ∼ ∆y ∼ 〈N〉 (∆y � ∆ycorr) (4)

and

κ̂k ∼ (∆y)k ∼ 〈N〉k (∆y � ∆ycorr). (5)

it is more convenient to describe acceptance dependence
in terms of the factorial cumulants κ̂k.

In contrast, the behavior of the normal cumulants, κk,
in the regime ∆y � ∆ycorr is more complicated. Accord-
ing to Eqs. (3) and (5), the limit ∆y → 0 is controlled
by the lowest cumulant, κ̂2, i.e.,

κk − 〈N〉 ∼ κ̂2 ∼ (∆y)2 when ∆y → 0, (6)

or ωk − 1 ∼ ∆y.3 On the other hand, if or when the
approximate hierarchy |κ̂k| � |κ̂l| for k > l holds, as
experimental results [33] indicate at some energies (e.g.,
at
√
s = 7.7 GeV |κ̂4| � |κ̂3|, |κ̂2| for ∆y ∼ 1), the scaling

in the regime ∆y � ∆ycorr, but not too small, could be
dominated by the highest cumulant in Eq. (3), and then

κk − 〈N〉 ∼ κ̂k ∼ (∆y)k (∆y not too small), (7)

or ωk − 1 ∼ (∆y)k−1. The crossover between this be-
havior and that in Eq. (6) could be a source of non-
monotonous acceptance dependence of ωk in some cases.

III. CRITICAL POINT CORRELATIONS

In order to describe the acceptance dependence of the
fluctuations measures (the cumulants) more quantita-
tively we need to input the physical information about
the correlations. We shall focus on critical point contri-
bution to the fluctuations and use the model described
in Ref. [11, 23] and, in application to higher-order cumu-
lants, in Refs. [22, 37, 38]. In this model the multiplicity
fluctuations at freezeout near the critical point receive a
contribution due to the coupling of the critical mode σ – a
collective mode of fluctuations whose correlation length ξ
becomes large (and diverges at the critical point in the
theoretical limit of infinitely large system size and life-
time).

3 This helps explain the linear dependence of the normalized cu-
mulants as the acceptance ∆ → 0 in Ref.[28]. We thank M. Ki-
tazawa for a discussion of this point.
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FIG. 1. Schematic illustration of the relation between the
spatial (Bjorken) rapidity η and kinematic rapidity y via the
effect of the thermal broadening (freezeout smearing).

A. The range of correlations

What determines ∆ycorr? This depends on the physics
behind the correlations, and in the case we consider, the
critical point, it is the fluctuating collective mode. Con-
sider the boost-invariant scenario with the correlation
length in co-moving coordinates at freezeout given by ξ
(Fig. 1). This translates into Bjorken rapidity correla-
tion length ∆ηcorr ≈ ξ/τf . With ξ ranging from 1 fm
typically to about 2 − 3 fm near the critical point [13]
and with freezeout Bjorken time τf ∼ 10 fm one esti-
mates ∆ηcorr ∼ 0.1− 0.3.

Detectors, however, do not measure the position space
(Bjorken) rapidity η, but the kinematic rapidity y of the
particles. Within the spatial correlation volume ∆ηcorr at
freezeout thermal distribution of particle rapidities yp in
the co-moving frame ranges roughly from−1 to 1 (Fig. 2).
The observed rapidity y = η + yp of the particles from
each correlated volume is then spread over an interval
of order ∆ycorr ∼ 1 (Fig. 1). Such thermal broaden-
ing, or freezeout smearing, in the translation of hydro-
dynamic spatial correlations into kinematic correlations
has been discussed recently in, e.g., Refs.[39, 40]. Be-
cause ∆ycorr � ∆ηcorr, the value of ∆ycorr is not sensitive
to ξ. This is in contrast to the magnitude of ωk − 1 [22]
— larger ξ means more correlated particles in the same
∆ycorr and larger value of ωk − 1.

It is essential for this argument that, within the cor-
related spatial volume, particles of all momenta in the
thermal distribution are correlated with each other, as
they are in the case of the critical point fluctuations we
consider — see Eq. (13) below.

-1.5 -1.0 -0.5 0.5 1.0 1.5
yp

0.2

0.4

0.6

0.8

1.0

dn�dyp

FIG. 2. Thermal proton rapidity distribution (T = 160 MeV).

B. The model of critical correlations

To make calculations simpler and the results more
transparent, we shall use the observation that even the
maximal correlation length ξ . 2 − 3 fm (limited in
a heavy-ion collision by finite-time and critical slowing
down effects [13]) is still considerably smaller than the
typical size of the system. A measure of that size is ei-
ther the transverse radius, or the Bjorken proper time at
freezeout, R ∼ 7−10 fm. In the idealized limit R� ξ we
can consider the spatial correlation as almost local and
approximate it by a delta function in the integrals involv-
ing slowly (in position space) varying distribution func-
tions f(x,p). The normalization of the delta function is
fixed by matching the space integral of the correlator:∫

d3x〈σ(x)σ(y)〉 = Tξ2 ⇒ 〈σ(x)σ(y)〉 → Tξ2δ3(x−y)

(8)
Similar approach can be applied to the 3-point and 4-
point (connected) functions, which can be also approxi-
mated by delta-functions, normalized using the results of
Ref.[22]:

〈σ(x)σ(y)σ(z)〉 → −2λ̃3T
3/2ξ9/2δ6(x,y, z) (9)

where δ6(x,y, z) ≡ δ3(x− y)δ3(x− z) and

〈σ(x)σ(y)σ(z)σ(w)〉c → 6(2λ̃23 − λ̃4)T 2ξ7δ9(x,y, z,w)
(10)

where δ9(x,y, z,w) ≡ δ3(x−y)δ3(x−z)δ3(x−w). The

parameters λ̃3 and λ̃4 are dimensionless functions of T
and µB characterizing the non-gaussianity of the fluctu-
ations of σ and described in more detail in Ref.[22]. We
shall not be concerned with the absolute magnitude of
(the critical contribution to) the cumulants in this pa-

per, and therefore the normalization factors, such as λ̃3
and λ̃4 will not be essential in the following.

The contribution of the critical mode to the fluctuation
of the particle distribution function, fA, is given by [37]

(δfA)σ = −χA
γA

gσ(xA), (11)

where we introduced a shorthand for the set of phase-
space coordinates, e.g., A = (xA,pA, . . .) with ”. . .”
standing for any additional particle quantum numbers
(spin, charge, etc.). We denoted the derivative of
the equilibrium distribution function, f eqA = (exp(εA −
µ)/T )± 1)−1, by

χA ≡
∂f eqA
∂µ

=
1

T
f eqA (1± f eqA ), (12)

(plus/minus for fermions/bosons), where the coupling
g is defined as derivative of the effective mass of the
particle in a given background of the critical mode:
g ≡ dm(σ)/dσ. For protons this corresponds to effec-
tive sigma-model coupling gσΨ̄Ψ. We also denoted by
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γA = dεA/dm = m/εA the relativistic gamma-factor of
the particle with momentum pA.

Using Eq. (11) we can calculate correlators of these
critical fluctuations. For example, for the critical contri-
bution, denoted by 〈. . .〉σ, to the two-point correlator we
find

〈δfAδfB〉σ = Tξ2g2
χA
γA

χB
γB

δ3(xA − xB) (13)

Note that the correlation in Eq. (13) appears local in the
position space (on scales R� ξ), but is non-local in the
momentum space. This momentum space non-locality is
essential for the argument in Section III A.

Introducing the shorthand notation,
∫
A

, for the inte-
gration over the phase space, i.e., over xA, pA (as well as
the summation over spin) we can express the fluctuation
of the particle number N in terms of δf : δN =

∫
A
δfA.

The critical contribution to the quadratic cumulant of
the fluctuations is then given by

κ2[N ]σ ≡ 〈(δN)2〉σ =

∫
A

∫
B

Tξ2g2
χA
γA

χB
γB

δ3(xA − xB)

(14)
One of the spatial integrals (say, over xB) can be per-
formed using the delta-function. The result can be writ-
ten as

κ2[N ]σ ≡ 〈(δN)2〉σ =

∫
x

Tξ2g2
(∫

Â

χA
γA

)2

(15)

where we introduced the shorthand,
∫
Â

, for the integra-
tion over the momentum (and summation over spin) sub-

space of the phase space A = (x,pA, . . .) = (x, Â). The
dependence on the acceptance enters via the range of
the momentum integration in

∫
Â

. This range is fixed in
the frame of the detector (lab frame), but translates (by
boost) into different ranges in the co-moving frame for
different points on the freezeout surface.

Treating higher-order cumulants similarly we find

κ3[N ]σ ≡ 〈(δN)3〉σ =

∫
x

2λ̃3T
3/2ξ9/2g3

(∫
Â

χA
γA

)3

(16)
and

κ4[N ]σ ≡ 〈(δN)4〉σ − 3〈(δN)2〉2σ

=

∫
x

6
(

2λ̃23 − λ̃3
)
T 2ξ7g4

(∫
Â

χA
γA

)4

(17)

Our model of the critical fluctuations is not precise or
detailed enough to distinguish between factorial, κ̂k, and
normal cumulants κk−〈N〉. However, it is clear from the
physical origin (k-particle correlation) and from the small
∆y behavior of κk[N ]σ, that they describe contributions
to the factorial cumulants κ̂k. However, the model de-
scribes the regime of sufficiently large correlation length
ξ, when critical contributions are proportional to higher
powers of ξ for higher cumulants, κ̂k ∼ ξ5k/2−3 [22], thus
leading to the approximate hierarchy |κ̂4| � |κ̂3| � |κ̂2|.

If such hierarchy does not hold in the data (in particu-
lar, when κ̂4 is close to zero because it changes sign [37],
or when ∆y is very small), one should then directly com-
pare κk[N ]σ to experimentally measured factorial cumu-
lants, κ̂k, instead of κk − 〈N〉.

C. Transverse expansion

We shall use the blast wave model (see, e.g., Refs. [41,
42] and, in application to transverse momentum correla-
tions, Refs. [40, 43–45]) of the freezeout surface to per-
form the integrals in Eqs. (15)–(17). In this model the
freezeout surface is isochronous, at a given Bjorken time
τ = τf , and the 4-velocity field is given, in longitudinal
Bjorken coordinates (τ, η) and transverse polar coordi-
nates (r, φ) as

(uτ , uη, ur, uφ) = (cosh η⊥, 0, sinh η⊥, 0) (18)

where the transverse velocity is parameterized as

β⊥ = tanh η⊥ ≡
ur

uτ
= βs

r

R
(19)

where the surface velocity βs ≈ 0.6 is a parameter we
determine by fitting the inclusive single-particle distri-
bution.

The space integral in Eqs. (15)–(17) becomes the inte-
gral over the freezeout hypersurface:∫

x

→ τ

∫
dη

∫
rdr

∫
dφ (20)

The momentum integration in Eqs. (15)–(17) can be ex-
pressed as an integral over kinematic rapidity, transverse
momentum p⊥ and azimuthal angle ψ:∫

Â

1

γA
→ ds

∫
d3
( p

2π

) 1

γp

→ dsm

(2π)3

∫ y2

y1

dy

∫ pmax

pmin

p⊥dp⊥

∫ 2π

0

dψ (21)

where ds is the species degeneracy (e.g., ds = 2 for proton
spin). The acceptance cuts are represented by the limits
of the integrations, with y2 − y1 ≡ ∆y. The particle
distribution function is given in terms of the energy εp =
u · p in the co-moving frame and expressed in terms of
the lab frame y, p⊥ and ψ, as well as η, r and φ, via

u · p = m⊥ cosh(y − η) cosh η⊥ − p⊥ cos(ψ − φ) sinh η⊥,
(22)

where m⊥ ≡
√
m2 + p2⊥ and η⊥ is given by Eq. (19).

Boltzmann approximation for the equilibrium distribu-
tion function

f eq ≈ exp

(
µ− u · p

T

)
, χ ≈ f eq

T
. (23)

is sufficient for our purposes (in particular, for protons,
assuming m−µB � T ), and it allows performing part of
the multiple integration in Eqs. (15)–(17) analytically.
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D. Beyond the model

Before proceeding to discuss the results let us empha-
size again that one of our simplifying approximations is
that of Bjorken (boost) invariance of the freezeout hyper-
surface. This assumption does not affect the validity of
Eqs. (15)–(17). The formulas are more general, and can
be applied also for a realistic freezeout surface obtained
in a hydrodynamic simulation, as it is done in Ref.[46].
The purpose of our paper is to address the issue of the ac-
ceptance dependence in a transparent fashion. The use
of the Bjorken scenario (with a blast-model transverse
flow) allows us to separate the acceptance window size
dependence from, e.g., the dependence on the location
of the acceptance window (central vs forward rapidity),
which has a completely different physical origin.

The approximation R � ξ, as in, e.g., Eq. (8), is also
very helpful to simplify our treatment, but can be re-
laxed, if necessary, along the lines of Refs.[46, 47]. To be
consistent, however, this should be accompanied by the
inclusion of finite-time, non-equilibrium effects.

We need to keep in mind that the model we use to
demonstrate the acceptance dependence is the most ba-
sic model of critical fluctuations, which neglects non-
equilibrium effects except for one – the critical slow-
ing down effect limiting the magnitude of ξ. Neverthe-
less, the model should be sufficient to describe qualita-
tively and semiquantitatively the acceptance dependence
of the cumulants, largely because this dependence is con-
strained by generic considerations described in Section II.

The most important feature of this dependence
is ∆ycorr, which is determined by the thermal momen-
tum distribution of the particles at freezeout, and is not
much sensitive to the dynamics of the spatial correla-
tions. The feature of the critical fluctuations which is
very important for both ∆y and pT window dependence
of the fluctuations is the non-locality of the correlations
in the momentum space, e.g., in Eq. (13). We do not
expect that taking into account non-equilibrium effects
more thoroughly (along the lines of, e.g., Ref.[47] or [48])
will affect this property significantly.

We do wish, however, to underscore the importance
of developing a more comprehensive non-equilibrium ap-
proach to fluctuations to enable more quantitative com-
parison with experiment [49]. Such an approach is es-
pecially crucial for predicting the absolute magnitudes
of the cumulants (which sensitively depend on ξ [22]) as
well as their sign [37, 48, 50].

IV. RESULTS

We can now use the formulas we derived for critical
point contributions to (factorial) cumulants to predict
the acceptance dependence of these contributions. We
choose

√
s = 19.6 GeV as a representative collision en-

ergy. The results are very similar at other energies we
considered (e.g., 7.7 and 11.5 GeV) and in agreement

STAR Data
s =19.6GeV

Βs= 0.6
Βs= 0

0.0 0.5 1.0 1.5 2.0
0

10

20

30

40

50

PT

dN
P

dy
dP

T

FIG. 3. Spectrum of proton transverse momenta from exper-
iment (points) [52], static thermal distribution (dashed line)
and blast-wave model (solid line). pT is measured in GeV.

with the general arguments described in Section II.
We determine the temperature and chemical potential

at freezeout using the fit from Ref. [51]: T ≈ 160 MeV,
µB ≈ 200 MeV.

We use the value of βs (the radial surface velocity)
optimizing the agreement with the proton pT spectrum,
as shown in Fig. 3.

We normalize the proton cumulants κk[N ] by their
Poisson value, 〈N〉, as in Eq. (2) and consider the con-
tribution of critical fluctuations:

ωk,σ =
κk[N ]σ
〈N〉

. (24)

to ωk−1 or, more precisely, to κ̂k/〈N〉 (see discussion at
the end of Section III B).

This quantity depends on acceptance window and, as
expected from the arguments in Section II, saturates in
the limit of full (infinite in rapidity y and transverse mo-
mentum pT ) acceptance at a value we denote ωk,σ(∞).
To show the acceptance dependence we plot the ratio
of ωk,σ in the given acceptance window (∆y in rapidity
for three representative sets of pT cuts) to the full accep-
tance value ωk,σ(∆y)/ωk,σ(∞) in Fig. 4. In this ratio the

prefactors such as g, ξ and λ̃i in Eqs. (15)–(17) cancel.
To understand the origin of the ∆y scale at which the

dependence saturates, it is helpful to look at the thermal
rapidity distribution of protons shown in Fig. 2. The
width of this distribution essentially sets the scale of the
rapidity smearing of correlations (schematically pictured
in Fig. 1), and the corresponding ∆ycorr ∼ 1.

For small ∆y � 1, the expected behavior ωk,σ(∆y) ∼
(∆y)k−1 comes, in the model, from the factor
(
∫
Â
χA/γA)k ∼ (∆y)k in Eqs. (15)–(17) where the vol-

ume of the integration domain scales as ∆y (see Eq. (21)),
and from division by 〈N〉 ∼ ∆y in Eq. (24).

Fig. 4 also demonstrates that the pT window depen-
dence is significant, especially, for higher-order cumu-
lants. This is a simple consequence of the non-locality
of the particle correlations in momentum space as seen
in, e.g., Eq. (13). In other words, particles of all momenta



6

PT ∈ (0, 2) GeV

PT ∈ (0.4, 2) GeV

PT ∈ (0.4, 0.8) GeV

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Δy

ω
2,
σ
(Δ
y
)

ω
2,
σ
(∞

)

PT ∈ (0, 2) GeV

PT ∈ (0.4, 2) GeV

PT ∈ (0.4, 0.8) GeV

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Δy

ω
3,
σ
(Δ
y
)

ω
3,
σ
(∞

)

PT ∈ (0, 2) GeV

PT ∈ (0.4, 2) GeV

PT ∈ (0.4, 0.8) GeV

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Δy

ω
4,
σ
(Δ
y
)

ω
4,
σ
(∞

)

FIG. 4. Acceptance dependence of the critical contribution to
the normalized cumulants of proton number. See Section IV.

in the thermal distribution are correlated with each other
by critical fluctuations.

V. SUMMARY AND CONCLUSIONS

We have described the basic features of the acceptance
dependence of the fluctuation measures, in particular, of
the (factorial) cumulants of the proton number fluctua-
tions. The main lesson from our analysis is that depen-
dence on rapidity acceptance window ∆y is determined
by the correlation range ∆ycorr in momentum space
which has very little to do with the correlation length
in Bjorken coordinate rapidity η. The latter is related
to the spatial correlation length ξ: ∆ηcorr ∼ ξ/τf and is
typically negligible compared to the former, ∆ycorr ∼ 1,
which is due to the thermal distribution of the particles

in the kinematic rapidity. The value ∆ycorr separates two
regimes of rapidity window dependence.

For ∆y � ∆ycorr the cumulants grow linearly with ∆y
and their ratios, such as, e.g, κk[N ]/〈N〉 = ωk, approach
constant values.

The opposite, small acceptance regime, ∆y � ∆ycorr,
is easier to describe using the factorial cumulants, κ̂k,
because they scale as (∆y)k in this regime. The normal
cumulants, on the other hand, given by linear combina-
tions of factorial cumulants in Eq. (3), have a more com-
plicated, polynomial dependence on ∆y in this regime.

Because the factorial cumulants have much simpler
scaling in both large and small acceptance regimes
(Eqs. (4), (5)), we conclude that using these cumulants
to analyze the acceptance dependence is advantageous.

For the typical experimental acceptance, ∆y . 1, we
find that larger acceptance leads to significantly larger
critical point signal, especially for higher-order cumulants
of fluctuations (see Fig. 4). Larger pT acceptance has a
similar effect.4 These results underscore the importance
of the planned STAR detector iTPC upgrade [34] to ex-
tend the rapidity coverage for the critical point search in
the Beam-Energy Scan experiment at RHIC.
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Appendix A: Small acceptance and factorial
cumulants

For completeness, we provide a derivation of the claim,
used in Section II, that the k-th factorial cumulant, κ̂k,
measures the strength of the (connected) k-particle cor-
relation and, therefore, in the regime ∆y � ∆ycorr,
roughly counts the number of correlated k-plets, leading
to κ̂k ∼ (∆y)k. We shall start with a 2-point correlator
and build up to derive Eq. (3) up to k = 4 in order to
elucidate the relationship between normal and factorial
cumulants.

Let us choose an infinitesimally small parameter ε and
divide a given kinematic region into O(1/ε) infinitesi-
mally small cells, or bins, labeled by index a. We shall
denote by na the random, fluctuating event-by-event, oc-
cupation number of bin a, and by 〈na〉 its event average.
When ε → 0 the value of 〈na〉 = O(ε) � 1 and thus na
obeys Poisson statistics with infinitesimally small mean.
In other words, the probabilities are given by

Pna=0 = 1− 〈na〉+O(ε2),

Pna=1 = 〈na〉+O(ε2), Pna≥2 = O(ε2). (A1)

i.e., most of the time na = 0, very seldom = 1, and
almost never ≥ 2. This means, in particular, that in
expectation values we can replace n2a with na: 〈n2a . . .〉 =
〈na . . .〉 ×

(
1 +O(ε2)

)
. Similarly, we can also derive the

following equation for the fluctuation δna = na − 〈na〉
which we shall find useful:

〈(δna)k . . .〉 = 〈na . . .〉 ×
(
1 +O(ε2)

)
, (k ≥ 2) (A2)

Using this equation we can obtain the following expres-
sion for the 2-point correlator:

〈δnaδnb〉 = 〈na〉δab + Cab (A3)

The first term on the r.h.s., nonzero only when a = b, is
simply the contribution of the fluctuation of the number
of particles in a given bin a. It does not represent cor-
relations. All correlations are in the second term, Cab,
which is nonzero when a 6= b. The feature of this term
important for us is that in the limit ε → 0, Cab varies
very little within the acceptance window if ∆y � ∆ycorr,
by definition of ∆ycorr.

FIG. 5. Diagrammatic representation of the r.h.s. of Eq. (A5)

Let us sum in Eq. (A3) over all the bins within the
acceptance window. By definition,

∑
a na = N , and thus

κ2 ≡ 〈(δN)2〉 =
∑
a

〈na〉+
∑
ab

Cab = 〈N〉+ κ̂2 (A4)

The first term on the r.h.s. is the well-known result of
Poisson statistics. The last term is the contribution
of correlations. When the acceptance window is much
smaller than the range of the correlations, ∆y � ∆ycorr,
this term is proportional to the volume of the acceptance
window squared, (∆y)2 or 〈N〉2, because in this case we
can approximate Cab by a constant within the acceptance
window.5

Let us generalize this argument to the 3-particle cor-
relator:

〈δnaδnbδnc〉 = 〈na〉δabδac
+ (δabCac + δacCab + δabCac) + Cabc (A5)

The 5 terms on the r.h.s. can be represented by dia-
grams as shown in Fig. 5, where a dot represents a bin
and a line connecting two dots represents two bins which
coincide, due to, e.g., δab. The first term is nonzero only
when a = b = c and then it equals 〈(δna)3〉 = 〈na〉 due
to Eq. (A2). The next 3 terms (in the parentheses) are
nonzero only when 2 of the 3 bins coincide. For example,
when a = b 6= c, they give 〈(δna)2δnc〉 = 〈δnaδnc〉 = Cac.

Summing over the bins within the acceptance we find

κ3 ≡ 〈(δN)3〉 =
∑
a

〈na〉+ 3
∑
ab

Cab +
∑
abc

Cabc

= 〈N〉+ 3κ̂2 + κ̂3 (A6)

It is easy to see that in the regime when the size of the
acceptance is much larger than the range of correlations,
∆y � ∆ycorr each term in the r.h.s. scales with the
volume of the acceptance window, ∆y, or 〈N〉. While
in the opposite regime, small acceptance window ∆y �
∆ycorr, due to the smoothness of Cabc, the term κ̂3 scales
as volume to the power 3, or (∆y)3.

Defining connected 4-point correlator as usual:

〈δnaδnbδncδnd〉c ≡ 〈δnaδnbδncδnd〉
− (〈δnaδnb〉〈δncδnd〉+ b↔ c+ b↔ d) (A7)

5 Note that Cab = O(ε2), but it cannot be neglected compared to
the first, O(ε), term in Eq. (A3) because in Eq. (A4) the number
of elements in the sum

∑
a is O(1/ε), while in

∑
ab it is O(1/ε2),

so the two terms in Eq. (A4) are of the same order, O(ε0), finite
in the limit ε→ 0. On the other hand, the diagonal terms, Caa,
in Eq. (A3) are negligible, since their contribution to Eq. (A4) is
O(ε)→ 0.

http://arxiv.org/abs/1510.08146
http://dx.doi.org/10.1103/PhysRevLett.103.262301
http://dx.doi.org/10.1103/PhysRevLett.103.262301
http://arxiv.org/abs/0904.2089
http://dx.doi.org/10.1103/PhysRevC.73.034905
http://arxiv.org/abs/hep-ph/0511094
http://arxiv.org/abs/hep-ph/0511094
http://dx.doi.org/10.1016/j.nuclphysa.2014.08.085
http://arxiv.org/abs/1408.4209
http://dx.doi.org/10.1103/PhysRevC.91.034907
http://arxiv.org/abs/1410.3914
http://arxiv.org/abs/1410.3914
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FIG. 6. Diagrammatic representation of the r.h.s. of Eq. (A8)

we can express it as

〈δnaδnbδncδnd〉c = 〈na〉δabδacδad
+ (δabδacCad + 3 more) + (δabδcdCac + 2 more)

+ (δabCacd + 5 more terms) + Cabcd (A8)

We have written only one of the similar terms in each
set of the parentheses. The additional terms are easier
to represent diagrammatically, as shown in Fig. 6.

Summing over all bins we obtain

κ4 ≡ 〈(δN)4〉c = 〈(δN)4〉 − (〈(δN)2〉)2

=
∑
a

〈na〉+ 7
∑
ab

Cab + 6
∑
abc

Cabc +
∑
abcd

Cabcd

= 〈N〉+ 7κ̂2 + 6κ̂3 + κ̂4 (A9)

The quantities we denoted by κ̂k, and defined so far
as k-fold sums of corresponding C’s, can be recognized
as factorial cumulants of the random variable N (with
κ̂1 = κ1 = 〈N〉). In the same way that normal cumu-
lants (for k > 2) measure the deviations from the normal

distribution, the factorial cumulants (for k > 1) measure
deviations from the Poisson distribution.

We find that the scaling of the factorial cumulants with
the acceptance window volume, or with ∆y, when this
window is very small, ∆y � ∆ycorr, is given by Eq. (5),
while for ∆y � ∆ycorr the scaling is the same as for the
normal cumulants, linear in ∆y, Eq. (4).

In experiment, the factorial cumulants can be eas-
ily calculated from the measured cumulants by solving
Eqs. (A4), (A6) and (A9) for κ̂k:

κ̂1 = κ1 = 〈N〉, κ̂2 = κ2 − κ1,
κ̂3 = κ3 − 3κ2 + 2κ1,

κ̂4 = κ4 − 6κ3 + 11κ2 − 6κ1 (A10)

(the coefficients here are Stirling numbers of the first
kind).

Alternatively, one can use the expansion of the gener-
ating function:

g(x) ≡
∞∑
k=1

κ̂k
xk

k!
= ln

〈
(1 + x)N

〉
. (A11)

to express the factorial cumulants directly in terms of the
plain moments 〈Nk〉, or in terms of the factorial moments
µ̂k = 〈N(N − 1) . . . (N − k + 1)〉 using

g(x) = ln

(
1 +

∞∑
k=1

µ̂k
xk

k!

)
. (A12)
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